zamba.models.model_manager¶
Attributes¶
Classes¶
ModelManager
¶
Bases: object
Mediates loading, configuration, and logic of model calls.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config |
ModelConfig
|
Instantiated ModelConfig. |
required |
Source code in zamba/models/model_manager.py
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
|
Attributes¶
config = config
instance-attribute
¶
Functions¶
__init__(config: ModelConfig)
¶
Source code in zamba/models/model_manager.py
421 422 |
|
from_yaml(config)
classmethod
¶
Source code in zamba/models/model_manager.py
424 425 426 427 428 |
|
predict()
¶
Source code in zamba/models/model_manager.py
436 437 438 439 440 |
|
train()
¶
Source code in zamba/models/model_manager.py
430 431 432 433 434 |
|
Functions¶
instantiate_model(checkpoint: Union[os.PathLike, str], weight_download_region: RegionEnum, scheduler_config: Optional[SchedulerConfig], model_cache_dir: Optional[os.PathLike], labels: Optional[pd.DataFrame], from_scratch: bool = False, model_name: Optional[ModelEnum] = None, predict_all_zamba_species: bool = True) -> ZambaVideoClassificationLightningModule
¶
Instantiates the model from a checkpoint and detects whether the model head should be replaced. The model head is replaced if labels contain species that are not on the model or predict_all_zamba_species=False.
Supports model instantiation for the following cases: - train from scratch (from_scratch=True) - finetune with new species (from_scratch=False, labels contains different species than model) - finetune with a subset of zamba species and output only the species in the labels file (predict_all_zamba_species=False) - finetune with a subset of zamba species but output all zamba species (predict_all_zamba_species=True) - predict using pretrained model (labels=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
checkpoint |
path or str
|
Either the path to a checkpoint on disk or the name of a
checkpoint file in the S3 bucket, i.e., one that is discoverable by |
required |
weight_download_region |
RegionEnum
|
Server region for downloading weights. |
required |
scheduler_config |
SchedulerConfig
|
SchedulerConfig to use for training or finetuning. Only used if labels is not None. |
required |
model_cache_dir |
path
|
Directory in which to store pretrained model weights. |
required |
labels |
pd.DataFrame
|
Dataframe where filepath is the index and columns are one hot encoded species. |
required |
from_scratch |
bool
|
Whether to instantiate the model with base weights. This means starting from the imagenet weights for image based models and the Kinetics weights for video models. Defaults to False. Only used if labels is not None. |
False
|
model_name |
ModelEnum
|
Model name used to look up default hparams used for that model. Only relevant if training from scratch. |
None
|
predict_all_zamba_species(bool) |
Whether the species outputted by the model should be all zamba species. If you want the model classes to only be the species in your labels file, set to False. Defaults to True. Only used if labels is not None. |
required |
Returns:
Name | Type | Description |
---|---|---|
ZambaVideoClassificationLightningModule |
ZambaVideoClassificationLightningModule
|
Instantiated model |
Source code in zamba/models/model_manager.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
predict_model(predict_config: PredictConfig, video_loader_config: VideoLoaderConfig = None)
¶
Predicts from a model and writes out predictions to a csv.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predict_config |
PredictConfig
|
Pydantic config for performing inference. |
required |
video_loader_config |
VideoLoaderConfig
|
Pydantic config for preprocessing videos. If None, will use default for model specified in PredictConfig. |
None
|
Source code in zamba/models/model_manager.py
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
|
train_model(train_config: TrainConfig, video_loader_config: Optional[VideoLoaderConfig] = None)
¶
Trains a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_config |
TrainConfig
|
Pydantic config for training. |
required |
video_loader_config |
VideoLoaderConfig
|
Pydantic config for preprocessing videos. If None, will use default for model specified in TrainConfig. |
None
|
Source code in zamba/models/model_manager.py
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
|
validate_species(model: ZambaVideoClassificationLightningModule, data_module: ZambaDataModule)
¶
Source code in zamba/models/model_manager.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|